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Recursive Linear Smoothing for
Dissipative Hyperbolic Systems

Laurence R. Riddle and Howard L. Weinert

Department of Electrical Engineering .. 4

The Johns Hopkins University
Baltimore, MD 21218

ABSTRACT

This paper presents an efficient method of smoothing steady-state, .4

dissipative hyperbolic systems with one spatial dimension. The
observations are from point sensors placed on the system. We
show that under realistic stability conditions there exists a family
of finite-dimensional acausal linear systems that characterize the
frequency domain behavior of the hyperbolic system. Using this .
characterization, we develop a smoothing algorithm that is recur-
sive with respect to the sensors, resulting in a significant decrease
in computational complexity relative to other methods. We illus-
trate the algorithm's performance by studying the smoothing
problem for sound waves in an air-filled pipe.

1. Introduction

The purpose of this paper is to derive an algorithm for the linear least-

squares smoothed estimate of inputs or state variables in a dissipative hyper-

bolic system described by a vector first-order partial differential equation with

boundary and initial conditions [9] . Examples of such systems are those

described by the telegrapher's equation, the vibrating Timoshenko beam equa-

tion, and the wave equation. Our smoothing algorithm can be used, for exam- .
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pie, to estimate the radiated sound from a vibrating object given observations at

discrete points in space [3]. The systems we consider here have one spatial

dimension and are operating in temporal steady-state. The observations are

taken by N point sensors distributed non-uniformly across the system. We

assume either (a)that the observation interval is long enough to reliably corn-
pute the Fourier transform with respect to time, and to cause different fre-

quency components to become uncorrelated with each other, or (b) that the

relevant random processes are periodic in time and are observed over an inter-

val that is a multiple of this period.

To solve this smoothing problem we first Fourier transform the observa-

tions with respect to time. We then have a set of uncoupled spatial smoothing
.'. ,.'.

problems over space, indexed by the frequency variable ,in which the underly-

ing models are finite-dimensional well-posed acausal linear systems [41-151.

The acausal linear system smoothing problems are solved by the method of

complementary models [11,[121 after which one may use an inverse Fourier

transform to recover the estimates as functions of space and time. The result-

ing algorithm is recursive with respect to the sensors, and hus offers a

significant decrease in complexity relative to other methods.

2. Dissipative Hyperbolic Systers

In many signal processing problems, one has measurements of the output VAN

of a system described by a wave-like (hyperbolic) partial differential equation.

Physically, a dissipative hyperbolic (DH) system [9] is a model for a wave bear-

ing structure that has internal energy loss due to distributed or boundary

.%,Q,, .*

". -.



-3-

damping. Examples of such systems are vibrating strings, beams, transmission

lines, acoustical and electromagnetic waveguides, etc. We will consider DH

systems with one spatial variable.

A DH system is described by a vector first order-system of partial

differential equations

-d-im(,,t) = A(x)-m(,t)+G()m(x,t)+e(x,t) , E [0,L] , t>t0  (2.1)

with boundary conditions

Hom(0,) = l(t) ,HLm(L,t) = 2(t) (2.2)

and initial condition

M(X,to)= Mo() (2.3)

where m(z,t) is the nX 1 state vector, e(X,t) is the input field, A(z) is a sym-

metric, continuously differentiable matrix with constant rank r, G(x) is a con- 9.*

tinuous matrix, dj(t) and do(t) are n/2X 1 boundary inputs, and H 0 and HL

are matrices of bounded, linear, causal, shift-invariant operators. All quantities
€9%,

in Eqs. (2.1)-(2.3) are real. Note that according to the Bochner-

Chandrasekharan theorem [21, the rboundary operators H0 and HL are such

that their operation in the frequency domain is multiplicative; i.e., the following

transform relations hold: :

Hom(O,t) 4-- H0 (jw)m(O,jw)

HLm(Lt) < HL(jw)m(Ljw)

where Ho(jw) and HL(jw) are complex valued n/2X n matrices.

A DH system will satisfy [9
[n--

G(x)+G'(z)- -A(x) _<0 for all x E [0,L (2.4)
ax'.-..

, % ..-
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m'(L,t)A(L )m(L,t) - "4'(O,t)A(O)m(O,t) < 0, for allt>t0  (2.5) .

when di  d2  0. These conditions ensure that when e , d d2  0

.tm(xt) I_ 0, for alt>t o  (2.6)

where

L
jHm(x,t) jF2  f m'(x,t)m(z,t)dz

0

To see this, pre-multiply Eq (2.1) ( with e = 0) by m'(x,t) and add the tran-

spose of the result, to obtain

-Lm (x,t)m(z,t) --L(m'(x,t)A(x)m(x,t))+m'(z,t)[G(x)+Gl(x)

S-A(X)]m(,t)"

It then follows that

a La
~j.~m~~t~P f '(xt)(~x+G'(x)- ~-(z)) m(z, t) dx

0

+m'(L,t)A(L)m(L,t)-m'(O,t)A(O)m(O,t) O50

An example of a DH system is the damped wave equation

2=Utt- C Uz +-t-IU C

with boundary conditions (damped supports)

u,(Ot)-kou,(O,t) = d(t)

u,(L ,t)+kLuz(L ,t) = d,,(t), k0o, kL > 0

and initial conditions NP

U.(Xo) 91(-) ,u ,o) = 92(-)



* . . .. _Juv-JI

Setting ,J

m,(Xt) - cu"(Xt), m.( ,t) = Ut(x,t)

one obtains

[T ] 2 : 0* 2- 2.
IMM~ ~ ~ ~~~ I = a xIM M

c-,,[m ]Jbo ]r
[- 0t) d)(1 )

[koc1 [mj(,t)J=d(t
[kL/c 1 d2(t)-

r,,(,)]
M(x) g X

Note that

G+a'- =o < 0
and when d, d2  0

m'(L,t)Am(L,t)-m'(O,t)Am(O,t) --- 2(kom?(O,t)+kLm(L,t)) < .

We will assume that the DH system is asymptotically stable. That is, if

m(x,t) is the solution of Eq (2.1) with e = d, =- d2 -= 0 then Ijm(x,t)jI -+ 0 as

t -- co. If we had assumed that the inequality in Eq (2.4) was strict, then the

inequality in Eq (2.6) would be strict also, giving us asymptotic stability. How- r

ever, we want our results to apply to systems like the above example that do

not have a strict inequality in Eq (2.4), but still are asymptotically stable. One

should note that a system that has normal modes, i.e., non-decaying responses

VV.

-7o;



"'
-

-.

to initial conditions, is not asymptotically stable. In practice, however, one

always has dissipative elements in the system and these elements should be

retained in the model to ensure a proper formulation.

Yet another stability assumption is required for the smoothing problem "

when the A matrix is singular. In this case it is shown in Appendix A that each

member of the family of finite-dimensional systems comprised of those state

variables associated with the zero eigenvalues of A has poles with only nonposi-

tive real parts. In order for the results of this paper to apply, we must assume .--

that all of these poles in fact have negative real parts. Again, if the inequality

in Eq (2.4) is strict, then this assumption is automatically satisfied. Physically,
1.

these state variables correspond to damping of the hyperbolic system. This sta-

bility assumption can be shown to ensure that an acausal linear system

representation exists and is well-posea1. The well-posedness of the acausal linear

system then implies that the resulting smoother is well-posed.

3. Problem Statement and Construction of the Acausal System

We wish to determine the linear least-squares smoothed estimates of the

state m(x,t) and inputs e(x,t),d j (t),d.(t) of the DH system (2.1)-(2.3) given

observations

yk(t) = Cm(xkt)±wk(t)

at specific points zk along the system, where C is p X n and w--

t E [ T/2 ,T/2J], k = 1,f2..Ns I

O<zl<z2< ... <xN <L

,-.5-... .. .. ... . ... .. . • ~ * ..'" '
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We assume that e(x,t),d(t),d 2(t) and observation noise wk (t) are zero mean ."."

and wide-sense stationary in time, that to =- oo and m0(x) = 0. The signals

m(x,t) and yk(t) are then also wide-sense stationary. We also assume that .

Ee(x,t)e'(z,s) = Q(x,t-s)6( z)

Ewi(t)w,'(s) R (t- s)q"

Ev(t)v'(s) = n,(t-s) where v(t) = [d1 '(t) d2'(t)]'

Ee(x,t)wi'(s) = Ee(x,t)v'(s) = Ew(t)v'(s) = 0

We will use a Fourier series expansion (in time) of the signals yk(t),

m(xt),etc., over the interval [- T/2 , T/2], and denote the Fourier coefficients .,""4

by Yk (jw),m(z,jw), etc., where w = 2ir 11T; I = 0,± 1,± 2, • . These

coefficients can be computed using: .

1T/2
?/UWJ - f -"k(t)e 'dt

T/2

Note that this integral can be evaluated at w -27 I1T using discrete-time data ":
14.

and an FFT if the signal is band-limited. The stationarity assumption implies .

that the Fourier coefficients are uncorrelated at different frequencies provided

one of the following conditions holds [8] : (1) the covariances Q(x,r), R,(r),

f1,(r) are periodic in r with period T; or (2) the observation interval T is long

and the covariances go to zero as r - oo. We note that in many vibration and

acoustical problems, the signals (and hence their covariances) are periodic. In .

the following we will assume that one of these conditions holds, in which case

2 . . .--. *--. * . . . . . • •- . • . .. ... •. 5* . • . • .5 .' . .* .4 .5 .. b . .%.. -%- - % %- - - -," " ,
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the original two-dimensional (space-time) estimation problem can be replaced "V.,

by a family of independent one-dimensional (spatial) estimation problems. In

particular, for each fixed w, we must estimate m(x,jw),v(jw),e(x,jw) given
'O l

y(jw),k -= 1,2, N,, and then inverse transform the results to get the time

domain estimates. Moreover, as we shall now show, m(x,jw) is the state vec-

tor of a finite- dimensional acausal linear system.

The model for m(x,jw) is given by the Fourier expansion of Eqs. (2.1)-

(2.3):

jwm(x,jw) =A(z)--m(x,jw)+G(x)m(x,jw)+E(z,jw) (3.1) "

Vom(OJw)+VLrn(L,jw) v(jw) (3.2)

k(3W) = C (-_kJW).+Wk(,w), k = 1,2, • ,N, (3.3)

where - ,'

..1

[ o ( i w) ] I V L H L w ]

Ec(x~Jw)e *(zJw) Q(x,.jw)6(x- z)

E v(jw)v*(jw) -- ,(jw); Ewk(jw)w (jw) = R,(jw).ki

- conjugate transpose , Q(x,jw), T1,(jw) Rw(jw) are the Fourier

coefficients of Q(x,r),rI,(r), R,(r), which when T is large can be approxi-

mated by dividing the spectral densities of e ,v, and wk by T. We will assume
.'j

that R.(jw) is invertible.

4-.. _Z

~ .. ~* .- .~ .' -. * . * "-,- A .-..
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If A (x) is invertible for all x, we can write Eq (3.1) as

~m (x, jw) A A(x,jw) m(x, jw) +B (x) e(x, jw) (3.4)

where

A(x,jw) - (x){jwl- G(x)}

B(x) =-A-'(x)

Eqs. (3.4),(3.2),(3.3) are a family of acausal linear systems indexed by w. It is

shown in Appendix A that a similar acausal linear system representation can be

obtained even when A(x) is not invertible, provided the stability assumptions

discussed earlier hold.

We must consider the well-posedness of the acausal linear system descrip-

tion of the DH system. An acausal linear system is well-posed if there exist no

nonzero solutions to an undriven system. --

Theorem: The acausal linear system of Eqs (3.2)-(3.4) is well-posed for all w.

Proof: Suppose there exists an w0 such that Eqs (3.2)-(3.4) are not well-

posed. There then exists m(x,jwO)#40 satisfying

Tx M(X,J*w) =A(x,jwo)m(x,jwo)

VOm(O,jwO) +VL m(L'jwo) =0

or, equivalently,

,jw~m(x,jwo) =A(x).1-m(x,jw 0 )+G(x)m(x,jwo)
09



H0 (jw 0 ) m (,jwo) =HL (jwo)in (L,jwo) 0

Iti aiy cekdtaif'(x)-eJom(x,jwo), then ' '(x,t) satisfies Eqs

(2.1) - (2.2) with zero inputs:

Oa ax

HOT '(0, t) =HL T'(L ,t) =0

Since II'I'(x,t)ll does not go to zero as t--+oo, we have a contradiction of the

asymptotic stability assumption.

4. Smoothing the Acausal Linear System

In this section we show how to solve the smoothing problem for our

* acausal linear system. Although this paper concentrates on DHI systems, many

parabolic type equations can also be written in an acausal linear system form.

The smoother is derived by means of complementary models, introduced by

Weinert and Desai [121, and extended by Adams , Wisky and Levy [11. The

* derivation differs significantly from that in [1] due to the possible singularity of

Qand f'l, and the fat that the obsvaton are discrete. In what follows, the

w dependence in Eqs. (3.2)-(3.4) will be suppressed.

A solution to Eqs. (3.2),(3.4) is

* L
m(x) = 4(x,o)f-'v+f G(x,z)B(z)f(z)dz (4.1a) P

0

where the state transition matrix 4)P satisfies

ax -1,(x,z) =A (x)4)P(x,z), 4)(z,z) 1 (4.1 b) .>

NA~



and the Green function is given by

4 '(x,O)F-v00(0,(z) if z<x
GC z,z) = -4(,O)F'VLZI(L,z) if > (4.lc)

* and the matrix F satisfies

F= VO+VL 4$(L,O) (4.1d)

The well-posedness of the foregoing acausal linear system guarantees the inver-

tibilityof F [4]-[l.

If rank rI, = q, we can write a full rank factorization of II, as

ri, =MM,

where M is n X q 1; in other words,

-'v = M4i , Ep* 4

Similarly, if rank Q(x) = q2, we can write

Q(x) -S(z)S*(x)

where S(z) is nXq 2 ; thus

c(x) = S(x)p(x) Ep(x)p'(z) - I,,(x- z)

Using Eq (4.1a), we can write Eq (3.3) as

.* C4,(zO)F-'Mm+f CG(. z)B(z)S(z)p(z)dz+w1  (4.2)
- 0

.'.

Eq (4.2) relates the observations to the underlying variables t4,p(.),{wj}, which

together span a HUbert space H. If Y is the Hilbert space spanned by the

observations {jy}, then it is shown in Appendix B that y,(.) and 0 defined

1 .-.

'.5 '
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below span the orthogonal complement Y._

Yc(=) p(x)-S*(x)B*()X(x) (4.3a)

, U-M*{F*}Y(X(O)-4V(L,O)X(L)) (4.3b)

where

X( x) G *( xk C*R,- w1k (4.4)

Now Eq. (4.4) implies

X=) =-AC*()X(x) ;x 34x (4.5a)

. '. ..
I%

--- \(xi+)+C*R.- lwi,]j - 1,2, ' ,No (4.5b) -.e

In order to make Eqs. (4.5) equivalent to Eq. (4.4) a boundary condition of the
- '. *- .-;

following form is needed:

KOX(0)+IL X(L) -0 (4.5c)

where K0 and KL. are n X n matrices . Eqs. (4.1c) and (4.4) imply that Eq.

(4.5c) holds if

K 0 V - < CL = 0. (4.6)

Furthermore, if Ko4*(L,O)+KL is invertible, then Eqs. (4.5) will be well- %

posed. If we take

1(0= V 1*{F*}1

KL = I- V1 {*F* }4 *(L,0)

then both the invertibility condition and Eq (4.6) will be satisfied. With this

choice of K0 and KL, the acausa linear system (4.3), (4.5) is complementary

c _C.IE.. e_. ..., . K...-. ....... ... .. . . ... .. . . . .
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to (3.2)-(3.4).

Solving Eq. (4.3a) for p(z) and substituting into Eq. (3.4) gives _

d-m,(x) --- ~ )B-)Sx(*xB(T)(-+,-) (4.7

Likewise, solving Eq. (3.3) for wv and substituting into Eq. (4.5b) gives

X (z-) -Tj +)+ C R- yi- Om (xi)) (4S ,W(4.8)

Multiplying Eq. (4.3b) by M and re-arranging, we get

V = M9+1,{F*}-(X(O)--T-*(L,O)X(L)) (4.0) .'-."

Combining Eqs. (3.2),(4.5),(4.7)-(4.9) gives the Hamiltonian system

d rm (z) B
d (x) 0 l= m(x) o[Sx ,x&T (4.IOa)

X(x,-) = X(xj+)- C*Rw-ICm(xj)-C*R,- (4.10b)

0 =0 o  r(O) V ri {F*}l*(LO) rm(L)] (4.10c) %

By projecting the random quantities in the Hamiltonian onto the subspace Y

spanned by the observations, we obtain the estimate Hamiltonian:

d [m- () [ BQB 1m.Tx= 0 -) J x31 (4.11 a)

-)(z+)- C*R,- 'Crf(.Tj)+C*Rw- Iyj (4.11b)

] Ko (() (4.11c)'"

[M]%" )
(0) 0 K". X(L)

'. o-A
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where ^denotes projection onto Y. To obtain 1(x) and 6, project onto Y in Eq.

(4.3a) (after multiplying by S), and in Eq. (4.9):

i(x) =Q(x)B*(x)X(x) (4.12a)

= n'I{F*)-1 (O)-, *(L ,O)>(L)) (4.12b)

To prove that Eqs (4.11) are well-posed, assume that =j 0 for all j. Now

rh(x) is the linear-least squares estimate of m(x) based on observations that ____

are all zero, so th(x) = Em(x) = 0, the last equality following from the well-

posedness of Eqs. (3.2)-(3.4). Moreover, since )(z) satisfies the unforced ver-

sion of Eqs. (4.5), which are well-posed, )(x) = 0 for all z , and hence Eqs. . .

(4.11) are well-posed.
" %.%

5. Recursive Solution to the Estimate Hamiltonian

To solve the estimate Hamiltonian (4.11), we will first diagonalize the

dynamics with the following change of variables:

( X ) x I% -1W N

where [ ] )

T(x) = L1(z) ..-..

7' ,) 0

P(z) =(of(x)+eb(x)) - '

and Of (z) and 06 (z) satisfy "

Z-'.
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- Wof0  Of A+A *O +Of BQB*01 ,x34x

- W b ObA +A 06- ObBQB"O xy6

with any positive-de finite boundary values Of,(0) and 0 b(L) The new variables V0I
fP and 'b satisfy

d rlql fx) % P(

dx 'Ib(lr) L L, V, (5.1lb)

where i.=

A1 x -(A *(--)+Of ()B(z) Q(z-)Bx)

A6 (x) =-(A *(x)- O(x)B(x) Q(x)B (x))

[voi-n{r-'0,(o) V0-rI,{F}- 10, (0) (0
- ~r 0  

= II{* (0)1V 6J ICA0(0) K001(o() 0 PO

v r-r = y *(,O)8b(L) VL+rI,{F}"'-§(L,)O0I(L) (
[VLL - KL Ob (L) ICOf (L) J[0 P(L)I

We must now specify the evolution of %k 'P0 6,0f 90 b at

Xzi :,j =N,* ,. If we choose

Of \ (-j ) f(j-+ *R -1

=Z

then one can show that



f (x,+) P ' /f(Xi-)+C R - yj (5.2a)

'k r =- C(xj+) +C 'Ru, 'Y (5.2b)

Eqs (5.1)-(5.2) are in a form that can be solved recursively. In terms of

%P f(0) and %Y b(L) , a solution to Eqs. (5.1)-(5.2) is

'A(X(0) f,(o)=+'(X) (S.3a)

b( ) --'-- ,(5.3b)

where

" *A,(-.o)= A,(x>)A(,.o) ; .(.)= I .'5

d
-'IAf(:L') =A(z)A,(zL) ; k4 ,) =I

d = A 1(x) O(x) Xx i  (5.4a)

-px

SOx) Ab(z)' 1P (x) , 3, (5.4b)

4,.0(o)= 41(L 0 (5.4c) ,- ""-,

-(xj+ ) -*(x,-)+C*Ru,-'y, j = 1,'(5.4d)

,p( - 41x+)+CR,-yj = 1, N, (5.4e) ,.-

Setting z = L in Eq. (5.3a) and x = 0 in Eq. (5.3b), and using Eq. (5.1b) we

obtain

[ :o1 _F '{VfLIP(L )+ VbO1 (0)) ,%<':"
(L)

°:4.

U-,. . . . . . . ..
U,. .-. ,. .. ... .. ... .. . ... .... . . .. . ... ... .. .. . . . ... . . .. ... .. .. . . .. ,.-
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where

Fi [PVrA(LO) :'Vi+VO~t,(OL)J ]

A recursive solution to Eqs (5.1)-(5.2) is therefore given by:

I o ],[*6(z) -- - 0I*A(,L) F(L {VfrCL)+V4OP .(0)}

[b(z (X) 0 :A(,LJ 1

+ O(X) I . 1 -.:, .
b(5.5)

in conjunction with Eqs. (5.4).

We now show that FIb is invertible. When y= 0 j = 1, ,N., any

solution to Eqs (5.1)-(5.2) will satisfy

%.~1

'pb(-) "-- AJTL )162  "" ,

where

.1d', [r 1] .,

If F were not invertible, we could generate non-zero solutions to Eqs. (5.1)-

(5.2) and hence to Eqs (4.11) (via T-(z)) with yi 0, contradicting the

well-posedness of Eqs (4.11).

8. Smoothing Error Covariance

We wish to calculate the time domain error covariance

P,(Zt) = E[t,(x,t)i,'(z,t)]

where A = m- fh. Using Fourier transforms, one can show that

.-.- .
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P,(X,t)= P(,0,o) fiE P,(x,j2TI/T)
1=-o

where

P(x,jw) = E[fii(x,jw)i •.(xjw),

A dynamical equation governing ti(x,jw) is obtained by projecting the Hamil-

tonian system (4.10) onto y, and using the definitions of y, and 0:

dx-Ax _xia)_

- ) ff (xj+ )- C*R,.-l , Cr(xi)- C*R,- Iwi  (6.1b).-"

[V0 -rI 1 {F}1][ idVL rI~w*)7lz,*(L,0)

Heeaanthe w dependence has been suppressed. Note that these equations -

are3i~lartoEqs. (4.11) and can therefore be solved using the same diagonal-

Wng cangeof variables. Thus,.if

T,()

* then

ffi K Wn~X., ( i,. 1, ": -"!.,,

* exxF ~v VJ'e'(L )- Vbeb(0)+ e'Ox

where

dfox) Af A(x) eb(x) +Of (x) B(x) c(x) , x;-xi
'p dx

pd

,- %.

'p
.1

. ,..-...-.-.l. .
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e0 ((0) -eb(L) 0

-ltj,j1,N

eb 0 (X,-) =

Letting .
(() E~e(ux 9 12(X) .

e(x ' eb ) re2l(z) '922(-T)
then

Pm(XT,jW) P()91

With the following definitions:

rif~ ~~~ (.)-E f*x

=I(x Ef eO(x) e 0(x,)J .

Rfb~~~ ~ ~ ~ (.T Y)Ee4.-,0ye9(x) can be written as

e(x) *JI6(x)Fj 1 jn+ Vfrn(L VL+VLRb(L0) VO.+ vbor (0) Vo.

where

% % %4.
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,- ..I.

j(xT) V4A, (L ,x)1If(x):Rfb (L~x Vo[ X0:rbWPIO

By direct evaluation, one can obtain the following formulas for Rf6 , I1i ,

Rf(Xy) =-f 4 A(X;,a)O (a)B() Q(a)B*()9 ()-to, (y,a)da, x>y
A'9

d

-dxnf(A) =~ z:) + rnf()A; + Of BQB Of, x-76,...i

d II , ( ) -= A , n b( x ) + I , ( z ) A - O b B Q B * O b, zx"

dx

/f(o) = 116 (L 1) =0

nfl(xj+) =ni(j-)+C*R.-C, N8, ,N

n((x-) =rnb(xJ+)+C*Rw, , j =N1,. ,

7. Separable Boundary Conditions

In this section, we show that if the boundary inputs dl(t) and d2(t) of the

DH system are uncorrelated, and if the resulting block diagonal II, is inverti- 9,

ble, the smoother and error covariance formulas simplify considerably. Under .*..

these conditions, Vof; 1 VL - 0 , in which case the acausal linear system has

separable boundary conditions. To examine the filter and smoothing error

covariance for separable boundary conditions, premultiply Eq. (4.11c) by
a .*- .. J,*

'v n -' - 4 (L,0) 
r -

a .% %

9-*

g v go 
L 0 ] (L) 1= 0

L -

.- ~. - .'-'

~% ~z Z~*.t '.° - °.

L. 

-

r0 
1...L
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If we choose

Of(o) = V n;IVo , Ob (L)= Vjn-V,

then the change of variables using T(x) produces the boundary conditions IW

T f (0) L

so that I! -f P and b %P 4 . Therefore
," %-

ifz(x) = ()P()PXqox

(x) = Of(x)P(x)4'°6(x)- 06 (x)P(x)'(z) 4.. ,

Furthermore,by proceeding in the same fashion with Eq. (6.1c), we get

e1 (0) = -i'v , eb(L) = VL*Ii;v.

so that . ,

eb (X) = 'P'A1 ,) V~-lv+cI(x)

It follows that '.

912(X) = o21(x) = 0

,e22(X ) = 'A,(X,L )Ob(L)b * "-":nbx) Ob

Therefore, P.(x,jw) = P(x). 'r

S. Algorithm Complexity

We will examine the computational complexity of the algorithm presented

in Section 5. For computational purposes, we assume that the interval [0,L] is

partitioned into X regions , and that an FFT with fl frequencies is used. Table

p N. 
" - .

p ..-. -

,
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1 gives the complexities of the major steps necessary to compute the estimate

TABLE 1 Complexity of the Smoothing Algorithm

Step Complexity

Fourier transform the 0(0 Nplogfl) ...

observations _ _"."

Compute ,O Q.,',,) O(fh 0 Xn +N, np+Nn'l)
Compute rh(x.jw) O(. yn 2)

Inverse transform O(01 nXlogfl)Ia ( x ,jw ) --__ __ _ _ __ _ _

As can be seen from Table 1, the overall complexity of the algorithm is

0(f) [X(n 3 +nlogil )+N(np+n2+plogl )J)

For comparison, if a Wiener smoother is used
S. S.'

r(X,t) = ' {S(X,j)S,,(w) Y(W)}.

where

y (jw), T ). (jW) IT

5'YR.

Sy(Z,jw) is the cross-spectral density between m(x,jw) and Y(jw), and

Syy(jw) is the spectral density of Y(jw); then the complexity of the recon-

struction is

0(fl [Np(nX+N"p2 +logf) )+nlogfl])

An example using this type of approach can be found in [11]. We see that the

algorithm presented in this paper is most advantageous when the number of

sensors are large (linear in N, versus cubic in N,).
7

V..

:-S'-.

*5-%

A),.
:,'I

I, .. ... . . . . .. . . . . . ... - - - . . .. . .. . . . . . . ' 1-. - . ..
-'S _ ] ' " e . "¢#.e,. .. 2." . .". ." % ,".," ."" ". .'""'"" "'.. . . """ " ""' ,.. "'"."" "''"':"''.,~,.......r.e,".""
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9. Example: Sound Waves in an Air Filled Pipe ,

As an example of the use of our algorithm, we consider the problem of

estimating the particle velocity and sound pressure levels inside an air filled

pipe 'with rigid walls, given observations of sound pressure levels at discrete

points along the pipe. We are interested in estimating the velocities and pres-

sures in the section of the pipe from x = 0 to x = 3 meters, and we assume

that forward traveling waves enter from the x = 0 boundary, and backward

traveling waves enter from the: x 3 boundary. The particle displacement ?k is

assumed to satisfy

=ktXt c21k,,,(x,t)+f(z,t) ,x E (0,3)

ipt 0, t - (, t) d1 t)

Ot(3,t)+cO&.(3,t) = 4(t)

where c is 332 meters/Second , e is a noise term accounting for yielding of the

pipe walls, and d, and d,, are waves entering the pipe section. The observations

are

Y,(t) = pOc2 '(,)+ (),j=1, 3
-where Po is the density of air (1.29 kilogram/meter ),and wj(t) is observation

noise. In DHi form this system becomes

arm. ~ ~ ~ ( 101(~) 0 1 x 0 1 Z.-
TtIm2(X10)= 0 0 m2( X:t) [E(x't)J

r( t) J3 [ J)
d1t I11dt

2( :0,( :t

'I Ir



:0 [n1(x3,t) 6 %, ,J

=it [poc.0 [m (X,t) ]wi( t) j. N,*

. % .

where

m 1 (x,t) =cv).(x,t)

M2 (zTlt) = '(X,t)

We make the following statistical assumptions

R; 1(jw) =10- 2 pascalS2

fl~(w) 16 [1 0] mtr 2/seCondS2

Ql(jw) =102 0 " etr

Q~jw) 10- 0 0 meters2 /IsecondS4

for w =27r I radians/8second; I = 1,± 2, ,~500. Figures 1 and 2 show

the smoothing error covariance for the sound pressure and particle velocity

respectively, as a function of the number of sensors (NM) uniformly distributed

along the pipe. Figures 3 and 4 show the smoothing error covariances as a

function of frequency for a pipe with 5 sensors. In these figures, the x-axis is

* frequency (from 0 to 1000 7r radians /second) and the y-axis is length along the

pipe from 0 to 3 meters. One can see the effects of spatially sampling the sound

* field. In Figure 4, the error covariance maximum occurs at w ==6641r radians

* /Second. Since the spatial sampling frequency for 5 sensors is 47r radians/

meter the error covariance maximum occurs when the wavenumber k =- of 4

the sound waves matches the Nyquist sampling frequency. Figure 5 shows the

actual and reconstructed time waveforms for the sound pressure level, using 8
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sensors. The actual and reconstructed pressure field as a function of space at

the frequency w - 500ir radians /second appears in Figure 8. Figure 7 displays

the actual and reconstructed particle velocity as a function of space at the same

frequency.

10. Concluding Remarks ~

The input estimates can be interpreted as the result of a generalized Born

inversion procedure. For instance, in the case of the 1D wave equation,

e(z,jw) will be the Born approximati6n to the wave speed variations in an

inverse scattering experiment [7]. In such problems, one may update the wave

speed function in an iterative fashion. The approach used in this paper to .

derive the smoothing algorithms is based on using a frequency domain two

point boundary value problem to describe the system's dynamics. A related

approach to characterizing a vibrating system's dynamics is given in [61, where

variations in the system's parameters are assumed to occur at discrete points

along it's length, giving rise to a constant diagonal A matrix . This type of

model can be handled using the algorithms developed in this paper. In both of

these approaches, one can interpret the boundary conditions at the endpoints of

the system as describing the reflection and transmission coefficients of the

hyperbolic system. In the DH case, the reflection and transmission coefficients

arise in a natural way when the A matrix is diagonal. Note that for many dissi-

pative systems, there does not exist a discrete set of spatial eigenfunctions, so

that a modal expansion of the dynamics and observations, a technique used

quite often in distributed parameter filtering and control, is not in general appli-

r. - 1-f -Mt if-
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cable to the systems discussed in this paper. The frequency domain description

of hyperbolic systems with 2 and 3 spatial dimensions involves distributed

parameter acausal linear systems. Efficient smoothing algorithms for the 2-D - -

wave equation, for example, can be developed in this way [10].
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Appendix A

4: To study the case when A(z) is not invertible, we put Eqs (2.1)-(2.3) into

a canonical form which separates the distributed parameter states from the so-

called local states. The local state variables typically correspond to damping

forces acting on the distributed parameter system. These damping forces may

be due to external inputs, corresponding to an active control system, or the

forces may be passive, such as structural damping in a beam. Phillips [9]
.

proves the existence of a family of orthogonal matrices {U(z) ; 0<x <L } with

absolutely continuous elements having square integrable derivatives such that

"C, 04 S

10~u'C )AC (x ) -a2z

- where A 2 2(X) is positive definite and r by r. Phillips gives an explicit algorithm

-.4
* .-- 71
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for calculating U(x). With the change of variables

=(~t U'(X)m(X,t)

Eqs. (2.1)-(2.3) become

CI YA 2 2 (z) 1 } yi(zt)+{UA U+U'GU~y(x,t)+U'(x)e(x,t)

HOU(O)y(O,t) - 4(t) , HL U(L)y(Lt) = 4(t)

Y(z,to) = U'(x)mo(x-) d

The stability assumptions are unchanged, because

-9a A

UIA~ ~ ~~~[ U,+U2 +UG + f, IGW
~ZI Z~.axj A 2 2 (x) ax -A

'(,t) =Lt m'(L ,t)A(L)m(L ,t)
A 2 2 (L)frLt

Y'1(0, t) [0 A'lO()Y(0,t) =m'(0,t)A(0)m(0,t)

* ~We therefore assume that Eqs (2.1)-(2.3) have the following canonical form ..

* ~ ~ 2 o(~rf~~ ~z 2 (z~~f[L, G12 ]jM(x't)j
r.z~~t (t 2A.T 0 1 22['.-

[2( 1m 20
0,~i , ]m JJ
[H H2 [,l( d(t) [H I H 2 ' d2() (A2)

01 2(010 2(L.t
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mo(Z) = o'

Fourier expanding Eqs (A.1),(A.2) at w - 27r LT, I 0,± 1, • , we get

0 ~ 1(-- jw) jw- G1, - G12  m 1 (z jw)
A22(X) Ox 2(z~jw) = - 2 1  jw- 2 2 m 2 (Z Mw

e[I( ,W) (A.3a)

The stability assumption (2.4) implies that--"-

* tG < 0 (A4.4) '

1* The first row of Eq (A.3a) gives

(jwl- w G H1 ) (jw) M G1 2 2(xjw)e(x) (A.5b)

From Eq (A.4) we see that the eigenvalues of G. have negative or zero real ...

parts. The stability assumptions that were discussed in Section 2 eliminate the "

possibility that these eigenvalues are on the imaginary axis. Solving Eq. (A.5)

for ml(z,jw) and substituting into Eqs. (A.3) gives

Z-m 2(Z,jW) - f f[jwl- G22- G21(jwl- G)-G121 M2 (),jw)

A 2
1(G 21(jwI- G1 ) - CI+f 2) (A.6)

H 1 (jwI- G, 1(0))- G12 (0)+H 02 1 M2 (w) dl(jw) (A.7a) -.'

V9
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[HOL(iwI- GI(L ))-'G 2(L )+HL2Im 2 (L,jw) d2(jw) (A.7b)

In deriving Eqs. (A.7) we have assumed that e(O,jw) = e(L ,jw) = 0. These

equations are now in the form of Eqs (3.2),(3.4).

Appendix B

In this appendix we will show that y,() and 9 defined in Eqs (4.3) span YL-

the subspace of random variables orthogonal to Y, so that YGYL is a direct

sum decomposition of H, the underlying Hilbert space generated by

{, p(z) ,O<x<L , a j=I, N,}. We introduce li andz definedby '

=j R;1 2 w , zi. R 1/2 -

so Eq. (4.2) can be rewritten in an obvious operator notation as

z=F/A+Gp+17 (B.1)

where

z -- [z1
1z2' ...ZN.' l 't 7 = [171'172'

If a E H, its projection onto Y is denoted d and its projection onto Yl is i. '

Decomposing (4 , p , 17) gives

A P 171 ,p=+~,q 
.

w here R z, F-.

=R - z , G*4 P --- F*4 (B.2) N-%...,,"

*.' T h e re fo re , -

- p-G*.+G*, -- F*i+F*j

If we define

Ye -p-G*A , = - -F*i V ?

-- g. .' :.-v'. 
'.

L ''- €" '.€
".

€ .€ . €" ," ,--" " €"." " "4'• 4 .P 4" . " ' ," " ".-. " '"." "4"*="" ""-" =- °= . o -€ ".. "°°. ..- .*.% *
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then

y ,- Gj - (I+G G)+G*FA (B.3a)

i- F*fi - F*G +(I+F*F)A (B.3b)

where we have used the fact ( see Eq. (B.1))

0 ---- F +G+ (B.4)

It is clear from Eqs. (B.3) - (B.4) that (y, , 0) uniquely determine (I2 , , fi)

thus (y, y , 0) uniquely determine (p , p , 7). Note also that Eq. (B.3) *.5.'p

implies Y, E Y1 and 0 E y. To verify Eqs. (4.3)-(4.4) one need only evaluate :

F and G*. .4...

S 4

**% .%

I, ",.

I "
.5

.-. 5..:

• . ."L.

%-5



covariance (pascals)^2

S0 0 0

0

o

0--

C>D. 0 (

* E 4

0

0 O 0 * _

h, • .% ,

0.. * ;,

N.0

0%.:

(3--

ZZZZZ -0

I I I I I .'1

S ... . '"1

o,:g, , ,, ,,%./. ;. -'.'y ',',' ...... . ... / .. ,.',.'. ... .. . ... ". . . .,.'.:,:. .;.'.'.',:.'.": . ,.



covariance (meter's/sec) ^2

II
o

o ko

00

UP 
d

.00..

I II

U '14



°. .. •

I

III 09

LA.b

' %
I-'..

0a

'1 .1** -.,,

(0 ," " ,- .,%

o - %'1

0

(D

-. ..+ '. '€+ , .. -..,

CA+'+-.

0 -

,.. .. .I... .I.. . . . . . . . .. . . . ... . . ... . .. *.. ... . . +. _. . ' .



N N Np.

oq~

C41

16 %

IsI

1D

1 01.

100



K..P

A- A A
j. 

. . . .

T~ f;

Ito~

'IL

P -'

S.1

z e- Oed



Ai~

TA-
*eJ, o 1 D 0 w I o w
L 3 e I 4 -

0 0 0 0 0 0 a 0

C! 1 C! ! C C! ! C C: ! C 9 9 C!

0 0



060

JJE p

CL~

N.j

%L e

41

0C

E IC!

bi

'Oc-#G/SJ9;Qw) -a:;T



UNCLASSIFIED

SECURITY CLASSIFICArIoN OF THIS PAGE

REPORT DOCUMENTATION PAGE

1~RPRSE:tURI CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified .0 .

2. SECURITY CLASSIF ICATION AUTHORITY 3. DISTRIBUTION/A VA4 LABILITY OF REPORT

.OCASSIPICATION/OOWNGRIAOING SCHEDULE Unlimited

4. PSROROMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUM9ERIS)

JHU/EE-86/19

BNAME Of PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Johns Hopkins University Office of Naval Research

SC, ADDRESS (City. State and 71P Code, 7b. ADDRESS (City. State and ZIP Code) ,%l
%4,%

Charles and 34th Streets 800 N. Quincy St. I
Baltimore, M 21218 Arlington, VA 22217

Se. NAME OF FUNOINGISPONSORING Ski. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGAIZATON I~ "~"~"~' NOOO14-85-K-0255

Be. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT *." M*
ELEMENT NO. NO. NO. NO.

11. TITLE Incdiude Security Claaificationj Recursive Linear Smo thingNR6-1
or Dissipative Hyperbolic Systems (Unclassifi d)

12. PERSONAL AUTHORISI
Riddle, L.R. and Weinert, H.L.
13. TYPE OF REPORT 13b6 TIME COVERED 14. DATE OP REPORT (Yr.. Mo.. Dayo 1S. PAGE COUNT

PRM /185TO9/2/6 September 25, 19638

1.COSATI CODES lB.SUBJECT TERMS (Continue on reueae if necesser, and identify by bloch num erD

FIELD GR-OUP SUB. GO. Hyperbolic systems; smoothing; recursive estimation; image i.
1processing; distributed parameter systems, acausal systems.

19. ABET ACT tCon lining on ovvrm if necessaryj and identify by btack nunlberi %%

This paper presents an efficient method of smoothing steady-state, dissipative
hyperbolic systems with one spatial dimension. The observations are from point sensors
placed on the system. We shew--"e under realistic stability conditions there exists a
family of finite; dimensional acausal linear systems that characterze the frequency domain
behavior of the hyperbolic system. Using this characterization,"v develop4, smoothing
algorithm that is recursive with respect to the sensors, resulting in a significant
decrease in computational complexity relative to other methods. -We 4iiseree, the
algorithm's performance by studying the smoothing problem for sound waves in an airt~filled
pipe..

20~. OISrRISUTIONI'AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION o

UN4CLASSI PIEO/UNLI MITED0 SAME AS RePT. O TIC USERS o Unclassified
22. NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

(Include A re Code)
Dr. Neil L.. Gerr (202)696-4321

' 00 FORM 1473,83 APR EDITION OP I JAN 73 IS OBSOLETE. UNCLASSIFIED%
SECURITY CLASSIFICATION OF TNS PAGE

=.14



- - -s.-. ~ .... A

"S

-~

U
.5'.5..

A

RW


